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Abstract

Decision-making usually takes five steps: identifying the problem, collecting data,
extracting evidence, identifying pro and con arguments, and making decisions. Fo-
cusing on extracting evidence, we study the task of sentence-level argument mining.
Given a topic and a sentence, the goal is to classify whether a sentence represents an
argument in regard to the topic. As arguments mostly require some degree of world
knowledge to be identified and understood, this thesis presents a graph-based model
that obtains external knowledge from structured and unstructured data. Because
unstructured data generally is not topic specific and noisy, recent work either utilizes
small amounts of data or focuses only one type of data. We use a topic model to
extract topic- and sentence-specific evidence from the structured knowledge base
Wikidata, building a sparse graph based on the cosine similarity between the entity
word vectors of Wikidata and the vector of the given sentence. To tackle the general
incompleteness of structured knowledge bases, we build a second graph based on
topic-specific articles found via Google. Combining these graphs, we successfully
capitalize on both structured and unstructured data, achieving 84.16% on accuracy
and 65.60% on F1 on the UKP Sentential Argument Mining Corpus.12

Abstract (German)

Der Prozess der Entscheidungsfindung lässt sich für gewöhnlich in fünf Schritte unter-
gliedern: Identifizierung des Problems, Sammlung der Daten, Filterung der Evidenz,
Unterscheidung zwischen unterstützenden und entgegengestellten Argumenten und
schlussendlich die Entscheidung. Mit dem Schwerpunkt der Evidenz-Filterung be-
fassen wir uns mit dem Feld der Argument-Extraktion auf Satz-Ebene. Gegeben sei
ein Thema und ein Satz, mit dem Ziel, den Satz hinsichtlich seiner arugmentativen
Relevanz des Themas betreffend zu klassifizieren. Zumal Argumente externes Wis-

1Some of our results currently are under peer-review as part of a paper.
2Our code is accessible at https://github.com/PatrickAbels8/GraphArgumentMining.
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sen benötigen, um gefunden und verstanden zu werden, präsentieren wir in dieser
Arbeit ein graphbasiertes Modell, das Wissen aus strukturierten und unstrukturi-
erten Quellen extrahiert. Da insbesondere unstrukturierte Daten für gewöhnlich
kontextunspezifische Rohdaten sind, nutzen bisherige Arbeiten entweder nur kleine
Mengen an Daten oder nur einen Typ von Daten. Wir nutzen die Latent Dirichlet
Allocation, um satz- und themenspezifisches Wissen aus der Datenbank Wikidata zu
extrahieren. Mittels Wort- und Satzvektoren des GloVe-Modells bewerten wir gefun-
dene Entitäten von Wikidata hinsichtlich ihrer Relevanz zum gegeben Satz durch
Berechnung der Kosinus-Ähnlichkeit und bauen so iterativ einen Wissensgraphen
auf. Um die Unvollständigkeit strukturierter Wissensbasen aufzugreifen, konstru-
ieren wir einen zweiten Graphen basierend auf den auf Google gefundenen Artikeln
zum gegebenen Thema mittels des OpenIE-Modells. Indem wir beide Graphen ver-
schmelzen, erhalten wir ein Graph-basiertes Modell, welches, wie unsere Ergebnisse
zeigen, erfolgreich von strukturierten und unstrukturierten Daten profitiert. Auf
dem UKP Sentential Argument Mining Corpus erreichen wir 84.16% Genauigkeit
und 65.60% F1.
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1Introduction

The emerging field of argument mining aims to gather data with an argumentative
context regarding a topic of interest, and by this, support decision making. Following
Stab et al. [35], we define an argument as a combination of a topic and a sentence
holding evidence towards this topic (Figure 1.1). However, without accessing some
relevant world knowledge, it is difficult to understand the arguments. We tackle this
problem by building a local knowledge graph from structured data (Wikidata) and
unstructured data (Google search) for each sentence and extracting paths leading
from one token to another. We use latent Dirichlet allocation (LDA) [3] to improve
the quality of connections in the knowledge graph by comparing the context of
a corpus, regarding the given sentence and topic, with the properties that each
Wikidata entity may be connected with.

1.1 Background

Early work introduced world knowledge into NLP-tasks by harnessing manually
constructed knowledge bases like Wikidata1 or DBPedia2 [4, 13]. Soon after realiz-
ing the incompleteness of structured knowledge sources, authors provided world
knowledge from unstructured data such as Wikipedia3 [32]. Having problems with
noise in unstructured sources, more recent work combines both structured and
unstructured data [7, 23, 27]. Motivated by the similarity of argument-based tasks,
utilizing and enhancing pre-trained language models like BERT [10] has gained
huge popularity [38, 39, 40, 31, 14, 16, 20, 21]. Our work aims to establish a proof
of concept for knowledge graph aided argument mining.

1.2 Motivation and Problem Statement

In this thesis we focus on the problem of making a decision. Decision-making can
be separated into five steps: First, we have to identify the problem. This can be the
choice of wearing school uniforms, legalizing marijuana or aborting a pregnancy.

1https://www.wikidata.org/
2https://www.wiki.dbpedia.org/
3https://www.wikipedia.org/
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Topic: Cloning
Sentence :

DNA cloning has been used in genetic engineering to create plants that offer
better nutritional value.

DNA
W IKIF IERED−−−−−−−−−−→ DNA (Q7430) part of−−−−→

P 361

DNA 3′ dephosphorylation (Q22278441) instance of−−−−−−−→
P 31

Entity obsoleted in Gene Ontology (Q93740491) MAT CH−−−−−−→ Gene therapy
MAT CH−−−−−−→ genetic engineering

Fig. 1.1: A sample topic and supporting argument as input (top) and a path connecting
concepts within the sentence as output (bottom).

Second, we need to collect data regarding this specific problem from different
knowledge sources. Third, in order to solve the problem we need to extract evidence
from the data, fourth, identifying pro and con arguments. These arguments help us
assessing the benefits and drawbacks of, fifth, making the final decision. Specifically,
we focus on step three being the extraction of evidence from given sentences to
later help labeling them as arguments supporting or opposing a topic. Using the
UKP Sentential Argument Mining Corps [34] we have access to instances containing
a topic and a sentence each. Our goal is to build a model that takes a topic and
a sentence as input and returns evidence regarding this specific input. Figure 1.1
shows a sample argument supporting the topic of cloning. Following statements
like “DNA is a part of DNA 3’ dephosphorylation” on Wikidata, we find a path that
connects two concepts found in the sentence, representing evidence of the given
sentence: an evidence path.

Our contributions of this thesis can be summarized as follows:

1. We develop a graph-based approach leveraging evidence from structured
knowledge bases via latent Dirichlet allocation.

2. We propose a dynamic breadth-first search algorithm using word embeddings
to create a sparse knowledge graph.

3. We introduce a method to enrich a knowledge graph with unstructured data
from Google via OpenIE.

4. We achieve an average accuracy of 84.16% and F1-score of 65.60% on the
UKP Sentential Argument Mining Corpus.

The thesis is structured in the following way:

2 Chapter 1 Introduction



Chapter 2

We will present the current state of the art in this chapter. The approaches will
be organized in three categories: (1) using only structured or unstructured data,
(2) using both simultaneously and (3) enhancing pre-training models with external
knowledge.

Chapter 3

In this chapter the conceptual background is discussed. It starts with basic definitions
like TF-IDF and other textual measures along with models and algorithms like LDA
and OpenIE used in the methods presented in this thesis. The chapter goes over
to knowledge graphs, introducing the knowledge base Wikidata and the word
representation model GloVe. It ends with a brief look into the field of argument
mining.

Chapter 4

This chapter presents the investigated strategies for property selection via topic mod-
eling, efficient structured knowledge retrieval via word embeddings and enrichment
of the graph with unstructured knowledge via OpenIE.

Chapter 5

Experimental results of several combinations of the presented methods on the UKP
Sentential Argument Mining Corpus [35] datasets will be discussed.

Chapter 6

The thesis finishes with further considerations to improve on the presented methods
in future work.

1.2 Motivation and Problem Statement 3





2Related Work

Approaches on solving argument mining problems using external knowledge can be
separated into different groups. First, there are approaches that only use one type of
data: either structured data or unstructured data. Structured data is machine- or
human-generated data in a knowledge base that is efficiently searchable via queries.
Unstructured data is basically everything else, mostly raw textual data. Second,
authors try using both structured and unstructured data at the same time. Last, some
approaches enhance pre-training models with external knowledge.

2.1 Structured or unstructured data

In the early stages of argument mining it quickly became clear that any task, whether
argument classification or question answering, is easier with the necessary world
knowledge to understand arguments [32]. Over the last years we have witnessed
a variety of approaches tackling this problem by extending models with external
knowledge.

Botschen et al. [4] use two kinds of knowledge: event knowledge about prototypical
situations from FrameNet1 and factual knowledge about concrete entities from
Wikidata, a collaboratively constructed knowledge base encoding world knowledge
in triples. In Figure 1.1 for example, the world knowledge “DNA is a part of
DNA 3’ dephosphorylation” is encoded to the triple (“DNA”, “part of”, “DNA 3’
dephosphorylation”). FrameNet is a lexical-semantic resource that normalizes the
given sentence by assigning related tokens like “companies” and “corporations”
to the same frame. Wikidata maps them to entities with detailed information in
form of semantic and ontological connections. Figure 2.12 demonstrates how their
framework works on sample inputs. However, they point out that world knowledge
alone might not be enough to improve on argumentative reasoning and that logical
analysis was needed. Also, they strongly focus on the given sentence regardless of
the general topic it is referred to.

1https://framenet.icsi.berkeley.edu/fndrupal/
2https://www.aclweb.org/anthology/W18-5211.pdf
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Fig. 2.1: Testing instances from the ARC dataset containing a claim and a reason each are
annotated with Wikidata entities and FrameNet frames.

Fromm et al. [13] instead classify potential arguments by also integrating additional
knowledge from DBPedia about the topic, highlighting the importance of the context
between argument and topic. Furthermore, by integrating contexts from word
embeddings, knowledge graph embeddings and models pre-trained on other tasks
they show that considering topics leads to better understanding of the context of
potential argument.

We improve on these ideas [4, 13] by (1) developing techniques to keep the context
of world knowledge and the given sentence closely related, (2) analyzing additional
information via natural language metrics like the tf-idf and (3) focusing on the
sentence as well as the topic to the same extent.

Other than the previous approaches, Potash et al. [32] use Wikipedia articles to
provide external knowledge via unstructured data. They compare three types of
Wikipedia corpora: 30 hand-picked topic-specific articles, roughly 38k randomly
chosen articles and the combination of both. All types of corpora appear to provide
meaningful additional knowledge, although, none of the three performs exception-

6 Chapter 2 Related Work



Fig. 2.2: An example from the CommonsenseQA dataset. ConceptNet evidence helps pick
up choices (A, C) and Wikipedia evidence helps pick up choices (C, E). Combining
both evidence derives the right answer C. Words in blue are the concepts in the
question.

ally well. Especially naive models have trouble dealing with the noise in large
corpora.

We capitalize on these findings by extracting unstructured data from manually picked
articles based on PageRank [28].

2.2 Structured and unstructured data

More recent work that combines both structured and unstructured data proposes new
benchmarks on various tasks, including question answering [7, 23], and document
classification [27].

Clark et al. [7] solve non-diagram multiple choice Science exams with over 90% (8th
grade) and 83% (12th grade) accuracy. Their Aristo project consists of three different
methods: (1) statistical and information retrieval methods, including searching the
exact question in structured datasets, (2) reasoning methods using semi-structured

2.2 Structured and unstructured data 7



data via OpenIE [24], and (3) large-scale language model methods such as ELMo
[30] and BERT [10].

In a similar graph-based approach but in a different problem, Lv et al. [23] build two
graphs on structured data from ConceptNet3 and unstructured data from Wikipedia
for the Commonsense Question Answering problem, achieving an accuracy of 75.3%
on the CommonsenseQA dataset [36]. Their framework is visualized in Figure 2.24.
While they select top 10 sentences regarding the given query as Wikipedia evidence
via the Elastic Search engine5, we rely on several hundred of topic-specific sentences
from Google search ranked via PageRank [28]. Furthermore, instead of ConceptNet,
we use Wikidata as a source of structured data, hence, we use knowledge from
Wikimedia6. Additionally, their rules for two nodes of the knowledge graphs being
connected are relatively strict: Either one is contained in the other, or they only
differ in one word. Focusing on unlabeled data, we do not want two nodes to be
this restricted. Instead, we require only one common word between two nodes
which adds more flexibility. While they build a graph from structured data with
each statement being a node and they topology sort it to avoid cycles, we consider
entities as vertices and relations as edges, having no need to sort. With their
restrictive search, Lv et al. consider 20 nodes in structured data and 10 sentences
from unstructured data, while both of our graphs from Wikidata and Google cover
up to several hundred nodes.

Ostendorff et al. [27] enrich BERT [10] with the author information via Wikidata to
improve book classification. However, they struggle to select the relevant properties
to traverse the Wikidata knowledge graph. Instead, they use pre-trained graph
embeddings as author representations trained on the full Wikidata graph. In contrast,
we use LDA to filter the properties that match the input-specific context.

2.3 Pre-training with external knowledge

While the above approaches build upon pre-trained language models, other ap-
proaches enhance language models, more specifically BERT, with external knowl-
edge [14, 16, 21, 31, 38, 40, 39, 20]. BERT, as the current state-of-the-art model,
is pre-trained on two objectives simultaneously: masked language modeling and
next sentence prediction. He et al. [16], for example, feed subgraphs extracted
from knowledge graphs into a transformer-based model. Thereby they learn the kn-

3http://conceptnet.io
4https://arxiv.org/pdf/1909.05311.pdf
5https://www.elastic.co/
6https://www.wikimedia.org/

8 Chapter 2 Related Work

http://conceptnet.io
https://arxiv.org/pdf/1909.05311.pdf
https://www.elastic.co/
https://www.wikimedia.org/


Fig. 2.3: Entity information from a knowledge graph is incorporated in a pre-trained lan-
guage model (left). A KG-Transformer model (right) utilizes a training sample to
describe the knowledge representation learning process.

woledge embeddings to incorporate pre-trained language models, as demonstrated
in Figure 2.37.

7https://arxiv.org/pdf/1912.00147.pdf
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3Basic Concepts

In this chapter we describe the concepts, models and algorithms used in the in-
vestigated methods. Each subsection starts with a brief introduction to the field
of work, and explains the specific concepts in hindsight that we use in this thesis.
Additionally, we discuss some alternatives to put our methods into context. First,
we introduce basic concepts in the field of text analysis. These include the word
embeddings, topic modeling and text annotation. Second, we investigate knowledge
graphs, specifically focusing Wikidata. Third, we take a brief look into the huge field
of argument mining.

3.1 Text Analysis

The field of text analysis is huge. Since one problem focused in this thesis is finding
the optimal choice of properties regarding a batch of concepts within a sentence, we
are interested in several similarity measuring concepts. In terms of measuring the
importance of a word to a document in a batch of documents we explain the TF-IDF.
To measure the cohesion within different concepts we explain the cosine similarity.
Finally, we demonstrate latent Dirichlet allocation as a topic model and OpenIE as a
framework to retrieve knowledge from unstructured data.

3.1.1 TF-IDF

A measure often used in text mining is the so called “term frequency-inverse docu-
ment frequency”, or short TF-IDF1. Given a list of properties and their descriptions
we aim to select some of them given a specific word t. Obviously a word is more
likely to appear in a longer text. Also, the word might appear in every property
description and might therefore be meaningless. We want to address these two
points by measuring the importance of a word to a specific property by looking at
the list of descriptions as a corpus. While there are several measurements to choose
from, the TF-IDF combines both issues by valuing the number of appearances in the
document higher but the frequency in the whole corpus lower.

1http://www.tfidf.com/
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Formally, given a corpus C = {D1, ..., Dn} containing n documents, the “normalized
term frequency” is defined as

TF (t,D) = number of times t appears in D
number of words in D

and the “inverse document frequency” as

IDF (t, C) = ln n

number of documents containing t
.

Finally, the resulting tf-idf measuring the weight of the word t in the document
D ∈ C is then calculated as

TF − IDF (t,D,C) = TF (t,D) · IDF (t, C).

3.1.2 Word Embeddings

Word and sentence representation has evolved into one of the leading fields of
interest in NLP, due to its enormous area of application. We aim to compare words
and sentences in their contextual relation. Therefore, we use a model that represents
each word with a vector. If words are semantically and syntactically similar, their
vectors have a smaller distance and angle, as visualized in Figure 3.12. Working with
knowledge graphs covering several hundreds of nodes, we value low computational
costs. Though, comparing several word vectors to one specific sentence vector, we
(a) calculate a vector representing a sentence once before we build the graph to
that specific sentence. Also, we (b) do not utilize a heavyweight embedding model,
such as ELMo (3072 dimensions) [30]. Since global matrix factorization methods
such as latent semantic analysis (LSA) [9] do poorly on word analogy tasks, and
local context window methods such as the skip-gram model [25] do not utilize
statistics of the corpus, we use GloVe (50 dimensions) [29]. GloVe aims to solve
both shortcomings, achieving state-of-the-art performance on several tasks. For
better comparison of sentence and word, we choose to not use heavyweight sentence
embedding models, such as Skip-Thought (4800 dimensions) [19], InferSent (4096
dimensions) [8] or USE (512 dimensions) [6]. Instead, staying in the same vector
space, we calculate the vector of a sentence by averaging its word vectors.

GloVe

To sparsen our graph, we use the Global Vectors for Word Representation: GloVe3.
As described in [29], their model leverages statistical information by training on

2https://nlp.stanford.edu/projects/glove/
3https://nlp.stanford.edu/projects/glove/
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Fig. 3.1: The GloVe model maps words to vector so that the differences and angles of similar
word pairs are close to equal.

aggregated global word-word co-occurrence statistics from a corpus. They perform
especially well on word analogy, word similarity and named entity recognition
tasks.

Sentence Embeddings

To be precise, we represent a sentence s = {t1, ..., tm} containing m words with a
real-valued vector

vs =
∑m

i=1 vti

m
.

Cosine similarity

To measure the cohesion of the given sentence s and a word w using their represent-
ing vectors vs and vw the two most common approaches are judging their orientation
and magnitude. Both have their benefits and drawbacks, thus we discuss why we
mainly focus orientation.

Measuring orientation, the cosine similarity between two non-zero vectors v =
(v1, ..., vk) and w = (w1, ..., wk) is defined as

cos(v, w) =
∑k

i=1 vi · wi√∑k
i=1 v

2
i ·

√∑k
i=1w

2
i

.

3.1 Text Analysis 13



Measuring magnitude, the euclidean distance between two vectors v = (v1, ..., vk)
and w = (w1, ..., wk) is defined as

d(v, w) =

√√√√ k∑
i=1

(vi − wi)2.

Instead of the distance of two vectors, their cosine is bound on the interval [-1,1]
with -1 meaning exactly opposite, 1 meaning the same and 0 meaning orthogonality.
Also, angles capture the similarity of concepts while disregarding the absolute
magnitude of their vectors. This might become handy when working with relatively
low-dimensional vectors.

3.1.3 Topic Modeling

One task of this thesis is to understand the context behind concepts found in a given
sentence and a topic. Furthermore, we aim to find words, specifically Wikidata
properties, that are relevant to this context. Hence, considering the Wikipedia
articles of the concepts as a collection of documents, we have a text corpus to work
with. Focusing automatic corpus summarization and visualization, we chose latent
Dirichlet allocation [3].

Latent Dirichlet Allocation

Fig. 3.2: Graphical model representation of LDA. While the outer box represents the docu-
ments in the corpus, the inner box represents the topics and words in a document.

Blei et al. [3] present a generative probabilistic model tackling the problem of
modeling text corpora. They aim to assign high probabilities to both given documents
and similar ones. Basically, they assume that (1) documents are represented as a
random mixture over latent topics and (2) topics are characterized by distributions
over words.

14 Chapter 3 Basic Concepts



Formally, they define a word denoted by w as an item from a vocabulary of size V ,
a document denoted by w = (w1, ..., wN ) as a sequence of N words, and a corpus
denoted by D = {w1, ...,wM} as a collection of M documents. As shown in 3.2,
the parameters needed are α, a k-vector with components αi > 0, and β, a k × V
matrix where βij = p(wi = 1|zi = 1), for a known and fixed k. Each w ∈ D is then
generated by:

1 Choose N ∼ Poisson(ξ)
2 Choose θ ∼ Dir(α)
3 for n = 1→ N do
4 Choose a topic zn ∼ Multinomial(θ)
5 Choose a word wn from p(wn|zn, β)

Following the paths of the graphical representation, a corpus containing M doc-
uments with N words generated by the corpus-level parameters α and β via the
document-level variables θd and the word-level variables zdn and wdn has a probabil-
ity of:

p(D|α, β) =
M∏

d=1

∫
p(θd|α)

 Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β)

 dθd.

Using an alternating variational expectation-maximization (EM) procedure they now
find α and β that maximize the log likelihood of the given corpus:

`(α, β) =
M∑

d=1
log p(wd|α, β)

3.1.4 OpenIE

Focusing information extraction of unstructured data, Angeli et al. [2] present a
system that produces relation triples. By applying several patterns they extract self-
contained clauses from long sentences. Via natural logic inference they determine the
maximally specific set of triples representing the clauses. Figure 3.34 demonstrates
this procedure on a sample sentence.

4https://nlp.stanford.edu/software/openie.html
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Fig. 3.3: Illustration of OpenIE annotating an example sentence with a set of triples.

3.2 Knowledge Graphs

When working with structured and unstructured data, separating useful from useless
knowledge is not only hard for humans, but also for machines. Therefore, it is
crucial to model the complex data while efficiently storing it. Knowledge graphs, as
a set of vertices connected by a set of edges, are best at accomplishing both tasks.
Wikidata, Freebase, and DBpedia, only to name a few, are publicly available data
sources containing huge amounts of real-world knowledge. Figure 3.45 shows how
querying these knowledge sources can help answering questions regarding multiple
cultural topics.

Fig. 3.4: Entities covering several topics, like culture, art and history, and their relations
can be visualized as a knowledge graph.

5https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/
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3.2.1 Wikidata

Our first main source of knowledge is the collaboratively constructed knowledge base
Wikidata6. We chose Wikidata because it is free, collaborative, multilingual, and
its broad community curation ensures a high data quality [12]. Wikidata currently
contains more than 88 million items7 and 5519 properties8. Beyond a label (e.g.
“Douglas Adams”), identifier (e.g. “Q42”), description (e.g. “english writer and
humorist”), and aliases (e.g. “Douglas Noel Adams, Douglas Noël Adams, and
Douglas N. Adams”), each item has a set of statements linked to other items. A
statement, expressing a semantic or ontological connection, can be described as
a binary relation between entities (e.g. P69(Q42,Q691283) representing the fact
that Douglas Adams (Q42) got educated at (P69) St John’s College (Q691283)).
Formally, we describe Wikidata as a graph G := (E,R, S) with S = {r(e1, e2)|r ∈
R, e1, e1 ∈ S}. One way to obtain knowledge from Wikidata is by querying data
through their SPARQL9 endpoint. By submitting POST requests with queries of the
form in Figure 4.3 we select every distinct (entity-property-entity)-instance (line 3)
where the first entity (subject of the statement) is “Q42” (“Douglas Adams”) and the
property (relation of the statement) is “P69” (“educated at”) (line 4), which leads
to all the entities Douglas Adams got educated in. We also gain access to the label
of these entities (line 5) in the english language (line 6). The first two lines are
necessary to access the entities and properties by their identifier.

3.3 Argument Mining

Making a decision as a human can be hard. When faced with crucial decision, we
first try to understand the matter of concern. We ask friends or experts, read articles
and collect as much data as possible regarding the given context. To differentiate
between the knowledge being important to this specific decision and useless knowl-
edge, we extract the evidence from the collected data and identify whether the
arguments support or oppose an optional decision. Finally, we make our decision.
In the field of machine learning, we aim to teach machines making their decision.
Considering these human steps, the most error-prone and time-consuming steps are
data collection and extracting the evidence from the given data. As a subfield of
natural-language processing, Argument mining aims to automatically extract and
identify argumentative structures from textual data. We lean onto the definition by
Stab et al.[35] who define an argument as the combination of a topic and a sentence
holding evidence towards this topic.

6https://www.wikidata.org/
7https://www.wikidata.org/wiki/Wikidata:Statistics
8https://www.wikidata.org/wiki/Wikidata:Database_reports/List_of_properties/all
9https://query.wikidata.org/
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In the early stages of argument mining, arguments were mainly focused on a dis-
course level. Emphasizing the structural essence behind single sentences, these
approaches did not consider topic-coherence [1, 11]. Later approaches identify
whether a sentence supports or opposes a specific topic but do not mind if the
sentences are not even evidence holding arguments [26] or only cover very spe-
cific types of sentences not showing any robustness [37, 22, 33]. Combining all
these ideas, Stab et al. [35] focus cross-domain argument mining by investigating
heterogeneous texts covering different topics.
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4Methods

We now present our framework in four steps: (1) Our baseline provided by Benjamin
Schiller1, (2) LDA-driven property selection, (3) word embeddings for the graph
built on structured data by Wikidata, and (4) building a second graph based on
unstructured data from Google searched articles. The whole process is visualized
in Figure 4.1, the topic and sentence are mapped to the Wikidata entities via the
Wikifier [5], an online entity linker, and the local knowledge graph built from
Wikidata. Wikidata, an open structured knowledge graph, stores information in the
form of tuples as described earlier in Section 3.2.1. This allows us to iteratively build
a local graph with Breadth-First Search (BFS) and finally extract evidence paths. We
focus on two kinds of information: (1) paths between the topic and the sentence
signaling topic relevance and (2) paths between tokens within a sentence to gather
additional world knowledge (“evidence”) for it, hence called “evidence paths” in the
following.

Fig. 4.1: The total framework maps a topic and a sentence to a set of paths. The baseline
is supplemented by LDA-driven property selection (blue box) and unstructured
knowledge enrichment via Google search (red box).

1Benjamin Schiller M.Sc., Doctoral researcher at Ubiquitous Knowledge Processing (UKP) Lab at the
Technische Universität Darmstadt.
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Fig. 4.2: Our main core executed on a sample input. The output is one evidence path
connecting a topic-concept and a sentence-concept.

4.1 Main Core

An argument is a combination of a topic and a sentence holding evidence towards
this topic which are given as input to the method. As shown in Figure 4.2, these
are the inputs to the Wikifier which annotates the input document with relevant
Wikipedia concepts via a PageRank-based method. The output is a JSON document
containing a list of annotated Wikipedia concepts along with their corresponding
Wikidata entities. As an input, we consider the top ks concepts found in the sentence
and the top kt concepts found in the topic, each concept representing a specific
token. The ks + kt concept nodes and their corresponding ks + kt entity nodes
build the foundation of our knowledge graph. In every of the nd iterations, we
query Wikidata via SPARQL-queries for a list of entities. We desire every entity
that is connected to one of the unseen entity nodes in the graph via one of the
properties of interest. Figure 4.3 represents a sample Wikidata query with its
returned list of object-entities as part of a node’s expansion. Repeating this BFS-like
expansion in every iteration, a knowledge graph representing the Wikidata-based
concepts and their relations regarding the given topic and sentence is extracted.
To cover both, sentence-sensibility and sentence-topic-coherence, we extract two
kinds of paths from the graph using NetworkX2: (1) the shortest path connecting
one topic-concept with one sentence-concept and (2) the shortest path connecting
two sentence-concepts. These paths serve as evidence to help classify whether the
given sentence is an argument to the given topic.

2https://networkx.github.io/
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PREFIX wd:<ht tp ://www. wik idata . org / e n t i t y/>
PREFIX wdt:<ht tp ://www. wik idata . org /prop/ d i r e c t/>
SELECT DISTINCT *
WHERE { wd:Q42 wdt : P69 ?o .

?o r d f s : l a b e l ? l a b e l .
FILTER ( lang (? l a b e l ) = ’ en ’ ) .

}

Q4961791 : Brentwood School
Q691283 : St John ’ s Col lege

Fig. 4.3: Expansion of the node “Douglas Adams” via a SPARQL query (dashed arrow) per
entity per property (top), one such query (middle), and its output (bottom).

4.2 Property Selection with Latent Dirichlet
Allocation

4.2.1 Problem Statement

Building a knowledge graph over all the existing properties per node is infeasible as:
(1) In the worst case, at depth nd the graph already covers

#nodes =
nd∑

d=0
(ks + kt)nd

p

nodes and

#edges =
nd∑

d=1
(ks + kt)nd

p

edges with ks + kt being the number of entity nodes that we started with and np the
number of properties. With the BFS runtime of a graph being O(#edges+ #nodes),
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Fig. 4.4: LDA driven property selection executed on a sample input. A set of entities are
mapped to a set of properties, matching the given context.

in real-world applications the search is not feasible for np = 55193. (2) Most of
the properties do not help gaining relevant information on the given concepts, they
instead drastically increase the noise. (3) Building the graph based on a small fixed
set of properties leaves out most of the available information. (4) Alternatively,
taking a predetermined set of properties (e.g., the 50 most frequent ones) lacks
coherence to the given context. Considering these challenges, we select relevant
properties to the context of a specific sentence and topic dynamically by latent
Dirichlet allocation. As shown in Figure 4.4, we train a model on the Wikipedia
articles of the given concepts in the topic and the sentence via the Python library
Gensim4 and evaluate the available Wikidata properties regarding the LDA output
via TF-IDF.

3https://www.wikidata.org/wiki/Wikidata:Database_reports/List_of_properties/all
4https://pypi.org/project/gensim/
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Fig. 4.5: We compare the output of the LDA (top) and the property descriptions of Wikidata
(bottom) to select the set of properties matching the given context.

4.2.2 Data and Preprocessing

As shown in Figure 4.1, the blue box covers three steps: (1) retrieving Wikipedia
articles on the given entities, (2) training an LDA model on the articles to discover
properties related to this specific context, and (3) embedding the properties into the
main core. While the first and third steps are lightweight in terms of preprocessing
effort, in the second step, we need to find a way to compare the properties of
Wikidata to the LDA output. Fortunately, Wikidata provides a list of all properties
with a description. This information serves as an interface between the properties
and the words representing the topics given by LDA (listed as input in Algorithm 1
under “property_descriptions”). As shown in Figure 4.5, the LDA trained on the
Wikipedia articles of “Romeo”, “Juliet”, and “Romance” discovered five hidden topics,
one of them representing the love story between the two characters. This topic is
modeled as a list of words, one of them being the word “married”. Wikidata’s list
of properties and their descriptions covers, among others, the property “spouse”
which has the aliases “married to” and “married”. We take both appearances into
consideration when calculating the TF-IDF measured relevance of the property
“spouse” in this context.

4.2.3 Algorithm

We derive the list of properties given a list of entities in four steps (Algorithm 1):

(1) Load the corresponding Wikipedia articles (lines 1-3) using the Wikipedia-
API5 to find the given entities’ articles and extract the relevant texts.

(2) Train a LDA model (lines 4-5) to extract the most relevant topics for this specific
context. Our main library for tasks including preprocessing and model building is

5https://pypi.org/project/Wikipedia-API/
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ALGORITHM 1: PROPERTIES_PER_ENTITIES
Input: entities E, tfidf-threshold tt, count-threshold tc, num-topics nt,

num-properties np, property-descriptions P
Output: properties P̃

1 D ← ∅
2 forall e ∈ E do
3 D ← D∪Wikipedia article of e

4 L← LDA(D,nt)
5 T ← top-topics(L)
6 W ← ∅
7 forall t ∈ T do
8 forall w ∈ t do
9 if w /∈W and w /∈ stopwords then

10 W ←W ∪ w

11 F ← RANK_BY_TFIDF(W, tt)
12 P̃ ← ∅
13 forall w ∈ F do
14 forall p ∈ P do
15 if p /∈ P̃ and w ∈ p.info and p.count > tc then
16 P̃ ← P̃ ∪ p

17 return SELECT_FREQUENT(P̃ , np)

Gensim6. Using Gensim we remove stopwords, punctuation and numeric expressions
from the article documents, lowercase and tokenize7 them as well as lemmatize8 the
tokens. We build a dictionary (list of (token,count)-tuples) and a corpus based on
the preprocessed text which we apply LDA on. Then, we extract the nt best topics
represented as a list of words each.

(3) Rank the words representing the topics (lines 6-11) by their relevance to the
properties measured via TF-IDF. In order to retrieve the relevant yet indispensable
words, we consider the property descriptions as a batch of documents. We build a
matrix M with each cell mi,j being the TF-IDF of the i-th word and the j-th document
as described earlier in Section 3.1.1 and rank the words by their cumulative score

Si =
∑

j

mi,j

6https://pypi.org/project/gensim/
7https://www.kite.com/python/docs/nltk.RegexpTokenizer
8https://www.nltk.org/_modules/nltk/stem/wordnet.html
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Fig. 4.6: Our dynamic BFS with word embeddings executed on a sample input creates a
knowledge graph based on the similarity of new entity vectors and the sentence
vector.

proceeding with only those achieving a given threshold tt. Sticking with the example
in Figure 4.5, the word “married” appears in several property descriptions, one of
them being “spouse”. As demonstrated in Section 3.1.1, we derive

Smarried = mmarried,married name +mmarried,spouse +mmarried,place of marriage +mmarried,partner

= 1
11 · ln

5519
4 + 2

24 · ln
5519

4 + 2
29 · ln

5519
4 + 2

28 · ln
5519

4
≈ 0.6572 + 0.6025 + 0.4986 + 0.5164

= 2.2747

measuring the importance of “married”.

(4) Extract top-related properties (lines 12-16) by searching the property descrip-
tions for the top ranked words. We consider every property with at least one word
appearing at least once. Ranked by their number of appearances, we return the np

most frequent properties.

4.3 Knowledge Retrieval with Dynamic BFS and
Word Embeddings
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Topic: gun control
Sentence :

In these days and times, a lot of us do not feel safe in our
own homes or offices.

offices
W IKIF IERED−−−−−−−−−−→ Office (Q12823105)

subclass of−−−−−−−→
P 279

room (Q180516)
subclass of−−−−−−−→

P 279
location (Q17334923)

part of−−−−→
P 361

space (Q107)
part of−−−−→
P 361

spacetime (Q133327)
has part−−−−−→

P 527
Time (Q11471) W IKIF IERED−−−−−−−−−−→ times

Fig. 4.7: For this sample non-argument (top), our main core with LDA driven property
selection outputs a noisy path (top) connecting two concepts within the sentence.

4.3.1 Problem Statement

Only one node connection out of the context can result in a noisy path when building
a graph dynamically. For instance, Figure 4.7 shows one possible path connecting the
concepts offices and times within the sentence. This noisy path can only be found
since the entity spacetime (Q133327) connects the offices-related concepts and

the times-related concepts , even though, they do not fit into this sentence-specific
context. Furthermore, if concepts are relevant with respect to more than one topic,
they build a knowledge graph with a set of subgraphs, each covering the knowledge
of one particular topic. Traversing such diverse graph is not optimal, instead, deeper
exploration of one relevant subgraph could yield important information. As shown
in Figure 4.6, we address these challenges by only expanding child nodes if the
GloVe word embedding of every node (entity vector) belongs to the context of the
input sentence (sentence vector) with respect to a cosine similarity threshold. In this
example, the entity “Helix” consists of the one token t′ = helix which is mapped to
the vector vt′ . Calculating the sentence vector

vsentence = vDNA + ...+ vvalue

16

as introduced in Section 3.1.2, we measure the context-correspondence as

cos(vsentence, vt′).

GloVe primarily performs well on word analogy, word similarity, and named entity
recognition tasks which makes it suitable to our setting. We lower the computational
complexity by not querying once per (entity, relation)-pair but per entity, enabling a
theoretical speedup of the size of properties.
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ALGORITHM 2: DYNAMIC_BFS
Input: sentence s, concepts C, entities E, embedding-model GV ,

cosine-threshold tcos, max-nodes nn, max-depth nd

Output: graph G
1 G← MultiDiGraph()
2 for i = 0 . . .#E − 1 do
3 G← G ∪ edge(Ci,“WIKIFIERED”, Ei)

4 vs ← avg({GV (t)|t ∈ tokenize(lower(s))})
5 P ← PROPERTIES_PER_ENTITIES(E)
6 d← 0, Evisited ← ∅, Etovisit ← E
7 while Etovisit 6= ∅ and d < nd and #Evisited < nn do
8 d← d+ 1
9 forall e ∈ Etovisit do

10 Etovisit ← Etovisit \ e
11 if e /∈ Evisited then
12 Evisited ← Evisited ∪ {e}
13 forall (e, p, enew) ∈ QUERY(e, P ) do
14 if enew /∈ Evisited and enew /∈ Etovisit and

COSINE_SIMILARITY(GV, vs, enew, tcos) then
15 Etovisit ← Etovisitd ∪ {enew}
16 G← G ∪ edge(e, p, enew)

17 return G

4.3.2 Data and Preprocessing

We convert the GloVe data9 to a dictionary mapping each word to its vector. This
dictionary serves as look-up model for the words in the sentence and entities, labeled
in Algorithm 2 as “embedding_model”.

4.3.3 Algorithm

We map each word to its GloVe embedding and propose an augmentation method to
any BFS-based graph construction in Algorithm 2. Via NetworkX10 we initialize a
directional graph and allow multiple edges between two nodes. For every concept
in the given topic or sentence which is annotated by an entity via the Wikifier, we
add two nodes and one edge to the graph to represent their “WIKIFIERED”-relation
(line 2–3). These concept- and entity-nodes build the basis of our graph. Before
further growth of the graph, we calculate the sentence vector vs as the average of
the word vectors contained in the sentence (line 4) via the GloVe model, GV . Using
Algorithm 1, we receive a list of properties to build the graph (line 5). Lines 6-16

9https://nlp.stanford.edu/projects/glove/
10https://networkx.github.io/
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Fig. 4.8: Visualization of how word embeddings make the graph more sparse.

present a modified version of the standard BFS algorithm by querying Wikidata (line
13) and pruning the graph (line 14). To improve the query time of the increasing
number of properties, we adapt the SPARQL-queries by submitting a Wikidata
query per entity instead of one query per (entity, property)-pair. The returned
list of (subject, predicate, object)-statements contains potential new object-entities.
However, before adding a new entity enew to the graph, we prove it to fulfill one of
the following conditions:

max{cos(vs, vt)|t ∈ enew} > tcos

max{cos(vs, vt)|t ∈ enew} = −1,

where tcos is a threshold and vt are the GV -vectors of the lowercase tokens in enew.
We thereby assure at least one of the tokens in the new entity stays in the context
of the given sentence. Being equivalent to -1 means that GV covers no token in
the entity. We make sure that particular entities do not vanish. Therefore, we only
exclude entities with a maximum cosine being strictly greater than -1 but less than
tcos. Figure 4.8 visualizes the exploration of Wikidata into the sentence-specific
context for a sample input sentence “Trump uses the military to prove his manhood”.
Calculating the cosine similarities yields:

cos(vs, GV (“Trump”)) > tcos

cos(vs, GV (“Politics”)) > tcos

−1 < cos(vs, GV (“Investor”)) < tcos.

Therefore, the sentence-specific relevant nodes “Donald Trump” and “Politics” ex-
pand, the node “Investor” does not.
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Fig. 4.9: KG of topic-specific unstructured data executed on a sample input.

4.4 Enriching the Knowledge graph with OpenIE

4.4.1 Problem Statement

Recent studies proved the importance of additional unstructured data to compensate
for the incompleteness of structured knowledge-bases like Wikidata [32, 23, 7].
However, most approaches struggle with picking the relevant data and/or handling
the noise [32]. Instead of using either hand-picked or randomly chosen articles [32],
we consider top-ranked articles based on PageRank found in the Google searches for
a given topic. Using OpenIE [24], we build a second knowledge graph and combine
them gradually to handle the noise. Figure 4.9 visualizes this procedure. With the
annotated triples of OpenIE on the articles on “Cloning” found on Google, useful
statements like “DNA ligase usually resulting in complex mixtures of DNA molecules”
are encoded to nodes and edges, building a knowledge graph.

4.4.2 Algorithm

We enrich the knowledge graph with unstructured data in 4 steps (Algorithm 3):

(1) Load the corpus. (lines 1-7) By searching Google for a given topic, we receive
a list of websites ranked by Google’s PageRank algorithm (line 1). Considering the
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ALGORITHM 3: ENRICH
Input: graph G = (VG, EG), topic t, max-urls nu, max-annotations na,

max-chars ncmax , min-chars ncmin

Output: graph G
1 U ← PAGE_RANK(t, nu)
2 S ← ∅
3 forall u ∈ U do
4 forall s ∈ u.text do
5 S ← S ∪ s

6 S ← SORT_BY_SIZE(S)
7 corpus← EXHAUST(S, ncmax , ncmin)
8 A← OPENIE_ANNOTATE(corpus)
9 for i = 0→ na do

10 (subject, predicate, object)← Ai

11 G← G ∪ edge(subject, predicate, object)
12 forall v ∈ VG do
13 if MATCH(v, subject) then
14 G← G ∪ edge(v, “MATCH”, subject)
15 if MATCH(v, object) then
16 G← G ∪ edge(v, “MATCH”, object)

17 return G

top nu websites, we extract each sentence with at least three words (line 5) - the
minimum to let OpenIE build a triple from. For reasons like runtime, storage, and
OpenIE limits we rank the sentences by their total character length (line 6).

(2) Extract (subject, predicate, object)-triples (line 8) via Stanford’s information
extraction framework OpenIE which takes the corpus as input. These triples rep-
resenting statements are the basis of our second knowledge graph after removing
duplicates.

(3) Build the graph (lines 9-11) based on the first na statements. If for example
the sentence “In general members of politics have power” is annotated with the
triple (“Members of politics”, “in general have”, “power”), the subject and object
become nodes while the relation converts to an edge between them (line 11).

(4) Combine the two knowledge graphs (lines 12-17) Gs = (Vs, Es) and Gu =
(Vu, Eu) by summing up the set of edges V:

V = {(u, v) ∈ Vs × Vu|∃t : t ∈ u, t ∈ v, t /∈ stopwords, t /∈ numerics, |e| > 2},

with each node being a set of tokenized and lemmatized tokens. Figure 4.10
illustrates this procedure for a sample sentence.
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Fig. 4.10: Combination of structured data driven knowledge graph and unstructured data
from Google. Given the input sentence “Donald Trump has a lot of power.” the
structured data will yield the green part of the graph, while the unstructured data
will yield the red part of the graph. By combining the two kinds of knowledge
retrieval via a “MATCH”-function, one discovers the orange path which would
not have been possible with only one source of knowledge.

4.5 Conclusion

Our goal is to extract relevant paths from the knowledge graph that may help in
the downstream argument mining task. The paths connect entities from the given
topic and sentence. The challenge is to do this efficiently despite the huge number
of entities and properties being present in the knowledge graph. Additionally, the
path should be focused on a specific topic to ensure that it is a relevant path and
not a connection based on random hops. We train LDA on the Wikipedia articles of
each entity to choose more suitable properties for growing the knowledge graph.
Using TF-IDF, we filter the highest scoring properties for the topics given by the
model. Avoiding areas in the graph that are not within the given sentence context,
we map each token of an entity to a specific word vector and check whether its
cosine similarity with the sentence vector passes a certain threshold. Additionally,
we build a second knowledge graph based on unstructured data from Google search
for a given topic. Annotating the documents via OpenIE, we combine the two graphs
to tackle the incompleteness of Wikidata.
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5Experimental Evaluation

This chapter is divided into three parts: First, we introduce the baseline we compare
to in the task of argument identification. Second, we present the experimental
settings along with the frameworks that we test. Last, we discuss qualitative and
quantitative results as well as an error analysis and a case study.

5.1 Argument Identification

We model the task of argument identification as a binary classification problem.
Since we explicitly do not focus on the stance identification of arguments, we do not
differentiate between pros and cons. Hence, we only consider two labels, argument
or no-argument. We use the following models for the prediction task:

Baseline uses a the BiLSTM from [18] that only receives the sentence as an input.

Baseline+X incorporates the collected evidence paths for each sentence using two
BiLSTMs and an attention mechanism. One BiLSTM is used to flatten each path to
a single vector, and the other BiLSTM encodes the sentence. Attention is used to
generate a single vector from an embedded token of a sentence and all path vectors
connected to that.

We define a path as a sequence e0, p0, e1, p1, ..., en, consisting of entities e and
predicates p, embedded with pre-trained knowledge graph embeddings. We use
a BiLSTM (shared among all paths) to reduce each path to a single vector q (last
hidden state of that BiLSTM). All paths (q1, q2, ..., qm) for an embedded token v of
an input sentence are then used in an attention mechanism to gain a final vector u.
The attention mechanism is defined as follows [17]:

mmmi = tanh(WWW qqqqi +WWW vvvv),

fattention(qqqi, vvv) = exp(wwwT
mmmmi)∑

i exp(wwwT
mmmmi)

,
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topic sentences no-argument argument
abortion 3,929 2,427 1,502
cloning 3,039 1,494 1,545
death penalty 3,651 2,083 1,568
gun control 3,341 1,889 1,452
marijuana legalization 2,475 1,262 1,213
minimum wage 2,473 1,346 1,127
nuclear energy 3,576 2,118 1,458
school uniforms 3,008 1,734 1,274
total 25,492 14,353 11,139

topic sentence label
death penalty We do not trust the government to deliver mail or

launch a healthcare website, so why would we trust
them with life and death decisions?

argument

school uniforms But I think this, I think that local communities and
states should make the decision and I feel very
strongly about that.

no-argument

nuclear energy In fact, to equal the electrical output of a single
3.000 megawatt-electric nuclear generating station,
it would take roughly 2.000 wind turbines or 140
square kilometres of solar panels.

argument

Tab. 5.1: For testing we use the UKP Sentential Argument Mining corpus [35] (top), that
covers sentences to several controversial topics (bottom).

where WWW q, WWW v, and wwwm are trainable weight parameters, and qi denotes the i-th
path of a token v. With the attention weights, we compute the final, weighted path
vector uuu as:

αi ∝ fattention(qqqi, vvv),

uuu =
n∑

i=1
qqqiαi.

Vector u is then concatenated with the token embedding v and passed into the
sentence encoder BiLSTM. The procedure is repeated for all tokens of the input
sentence. Finally, we take the last hidden state of the sentence encoder BiLSTM as
the input for a classification layer with two neurons and use a Softmax activation
function to determine the class label.

5.2 Experimental Setting

The main framework, including the property selection as well as the structured
and unstructured knowledge retrieval, is implemented in Python. We compare
our framework to the baseline and partial improvements on eight datasets of the
UKP Sentential Argument Mining Corpus (Table 5.1) [35]. We run our experi-
ments on a single device with an Intel Core i5-10210U CPU and a 16GB RAM. Each
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dataset holds a collection of sentences on one specific topic. The instances cover
the following controversial topics: Abortion, cloning, death penalty, gun control,
marijuana legalization, minimum wage, nuclear energy, and school uniforms. Each
instance either supports or opposes a topic, or is off-topic. We train the knowl-
edge graph embeddings for the classifier on a Wikidata dump with openKE [15].
Emphasizing robustness of the models, we test them cross-topic. Therefore, we
use 70% train and 10% validation data of seven topics for training, and 20% test
data of the eight unseen topic for testing. For the BiLSTM we used the following
hyperparameters: num_seeds = 10, dropout = 0.7, lstm_size = 64, batch_size =
16, learning_rate = 0.001, epochs = 10, attention_size = 50, max_paths =
10, max_path_len = 15. We define the main core and upgrade it with the previously
discussed methods for further investigations:

+WD only takes the two most frequent Wikidata properties (“subclass of”, “instance
of”) into account to build the knowledge graph in maximum nd = 10 iterations,
focusing up to ks = 5 concepts in the sentence and kt = 3 in the topic, as our
preliminary experiments have shown to return good results.

+WD+LDA uses the top np = 50 properties selected via a LDA model of 200
iterations. We set the number of topics to nt = 5, the TF-IDF threshold to tt = 2.5,
and the minimum occurrence of a property on Wikidata to tc = 1000.

+WD+LDA+GloVe includes word embeddings to avoid out-of-context parts in the
graph. Focusing on low complexity, we use 50-dimensional vectors pre-trained on
Wikipedia 2014 and Gigaword 51. We choose a cosine similarity cutoff tcos = 0.4 on
which sample-based error analysis has shown a good performance. Thus, we build a
graph covering up to nn = 200 nodes.

+WD+LDA+GloVe+OpenIE enriches the aforementioned graph with unstructured
data via OpenIE. From the first nu = 3 websites we process between ncmin = 3000
and ncmax = 6000 characters to let OpenIE extract up to na = 500 annotations.

5.3 Experimental Results

Table 5.2 shows the quantitative results, meaning the number of paths and their
length for each sentence, of our methods. Our main core (+WD) building the
knowledge graph based on two Wikidata properties achieves the highest number
of hops, which represents the overall searchable depth. However, the average
path is only 1-2 nodes long, which demonstrates the ineffectiveness of the 8 hops.

1https://catalog.ldc.upenn.edu/LDC2011T07
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model label
avg

#hops
avg

path len
avg

#sen→sen
avg

#sen→top
sents with
sen→sen

sents with
sen→top

Main core (+WD)
argument 8.0616 2.2330 0.1847 1.2263 0.1547 0.5474

no argument 7.7685 1.2444 0.1414 0.5982 0.1164 0.2553
all 7.8943 1.6688 0.1600 0.8679 0.1329 0.3807

+LDA
argument 5.4324 4.6434 1.4457 1.9933 0.5609 0.6928

no argument 5.0753 3.4474 1.0778 1.0552 0.4178 0.4015
all 5.2285 3.9606 1.2357 1.4577 0.4792 0.5265

+LDA+GloVe
argument 6.6467 5.0282 1.6169 2.1459 0.5589 0.7083

no argument 6.2837 4.0430 1.3922 1.2261 0.4588 0.4392
all 6.4385 4.4632 1.4880 1.6184 0.5015 0.5540

+LDA+GloVe+OpenIE
argument 6.4345 7.0336 7.9718 11.3184 0.8673 0.9552

no argument 6.3476 7.3088 6.0652 9.6826 0.7629 0.8984
all 6.3850 7.1903 6.8864 10.3871 0.8079 0.9229

Tab. 5.2: Quantitative results of the proposed methods (nn = 600) on 200 instances of
each of the eight test sets over ten seeds. Paths between entities within the
sentence are referenced as “sen→sen” and connecting the sentence with the topic
as “sen→top”. All numbers are relative. Bold numbers indicate the highest score
in the column.

For only 15% of the sentences that are arguments to the specific topic it finds a
path connecting concepts within the sentence, and for only one out of two a path
connecting the sentence with the topic. Selecting the properties via a topic model
(+LDA) lowers the hop count drastically, because every node now has 50 instead of
2 possible successors. The number of arguments with sentence-topic paths increases
by 15% and sentence-sentence paths by over 40%. Sparsing the graph via word
embeddings (+GloVe) successfully increases the hops back over 6 while keeping
the relevant paths, as the other statistics slightly improve. Enriching the graph with
unstructured knowledge (+OpenIE) doubles the size of the graph, so the average
path length almost doubles. The number of arguments with sentence-sentence
paths goes up to over 86% and with sentence-topic paths to over 95%. For both,
sentences with sentence-sentence paths as well as sentences with sentence-topic
paths, the margin between arguments and non-arguments stays the same for all
methods except for the topic coherence in the last method. The non-arguments also
provide sentence-topics paths in almost 90% of the instances. This demonstrates
the relevance of both measures, sentence-sentence paths and sentence-topic paths.
A sentence can be related to a topic but not provide any argumentative relevance
(e.g. an opinion). Therefore, it is important to have enough training material
for argument identification, which is why the overall growth from 13% to 80% in
sentence-sentence paths and from 38% to 92% in sentence-topic paths is a huge
success.

Evaluating the qualitative performance of our methods, Table 5.3 shows the F1 and
accuracy score on each dataset and their average. On all sets the accuracy increases
in every supplement, peaking in our final framework with scores between 81%
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model dataset accuracy F1

+WD

abortion 0.7592 ± 0.0137 0.6532 ± 0.0093
cloning 0.7825 ± 0.0092 0.6607 ± 0.0183
death penalty 0.8137 ± 0.0101 0.6172 ± 0.0178
gun control 0.7913 ± 0.0067 0.7496 ± 0.0104
marijuana legalization 0.7898 ± 0.0071 0.6912 ± 0.0102
minimum wage 0.7724 ± 0.0067 0.5555 ± 0.0209
nuclear energy 0.7566 ± 0.0090 0.7102 ± 0.0165
school uniforms 0.7878 ± 0.0132 0.4493 ± 0.0264
average 0.7817 ± 0.0095 0.6359 ± 0.0162

+WD+LDA

abortion 0.7998 ± 0.0010 0.6880 ± 0.0215
cloning 0.7980 ± 0.0118 0.6393 ± 0.0128
death penalty 0.7903 ± 0.0060 0.6275 ± 0.0236
gun control 0.7916 ± 0.0094 0.6674 ± 0.0350
marijuana legalization 0.8024 ± 0.0095 0.7778 ± 0.0249
minimum wage 0.7870 ± 0.0080 0.7451 ± 0.0186
nuclear energy 0.8022 ± 0.0102 0.6045 ± 0.0308
school uniforms 0.7974 ± 0.0044 0.5201 ± 0.0142
average 0.7961 ± 0.0095 0.6587 ± 0.0227

+WD+LDA+GloVe

abortion 0.8139 ± 0.0080 0.7111 ± 0.0310
cloning 0.8107 ± 0.0173 0.6432 ± 0.0406
death penalty 0.8212 ± 0.0130 0.5666 ± 0.0341
gun control 0.8170 ± 0.0168 0.5959 ± 0.0524
marijuana legalization 0.8033 ± 0.0207 0.6384 ± 0.0388
minimum wage 0.8003 ± 0.0276 0.7573 ± 0.0340
nuclear energy 0.8295 ± 0.0154 0.5817 ± 0.0317
school uniforms 0.8341 ± 0.0029 0.4878 ± 0.0321
average 0.8163 ± 0.0152 0.6227 ± 0.0368

+WD+LDA+GloVe+OpenIE

abortion 0.8726 ± 0.0116 0.6916 ± 0.0154
cloning 0.8500 ± 0.0021 0.7224 ± 0.0381
death penalty 0.8630 ± 0.0031 0.6415 ± 0.0302
gun control 0.8542 ± 0.0097 0.7476 ± 0.0025
marijuana legalization 0.8225 ± 0.0232 0.6300 ± 0.0159
minimum wage 0.8150 ± 0.0116 0.7712 ± 0.0227
nuclear energy 0.8500 ± 0.0021 0.7045 ± 0.0285
school uniforms 0.8760 ± 0.0202 0.5194 ± 0.0139
average 0.8504 ± 0.0104 0.6785 ± 0.0214

Tab. 5.3: Accuracy and F1 of the proposed methods on 200 instances of each of the eight
test sets over ten seeds. In each model, the graph built upon structured knowledge
from Wikidata covers up to nn = 600 nodes. Bold numbers indicate the highest
score in the column, underlined numbers indicate the highest score on this dataset.
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model dataset accuracy F1

Baseline average 0.6069 ± 0.0074

Our framework

abortion 0.8398 ± 0.0017 0.6993 ± 0.0124
cloning 0.8437 ± 0.0019 0.6844 ± 0.0129
death penalty 0.8502 ± 0.0051 0.6677 ± 0.0124
gun control 0.8392 ± 0.0022 0.6528 ± 0.0283
marijuana legalization 0.8472 ± 0.0015 0.6749 ± 0.0196
minimum wage 0.8412 ± 0.0013 0.6907 ± 0.0170
nuclear energy 0.8374 ± 0.0032 0.6328 ± 0.0310
school uniforms 0.8343 ± 0.0011 0.5451 ± 0.0198
average 0.8416 ± 0.0023 0.6560 ± 0.0192

Tab. 5.4: Accuracy and F1 of the baseline versus our framework (nn = 200) on the UKP
Sentential Argument Mining Corpus over ten seeds. Bold numbers indicate the
highest score in the column.

(“minimum wage”) and 87% (“school uniforms”). Our framework also performs
best on F1 score, improving on the main core by 4%. Regarding F1 only four
datasets peak in the final framework, which shows that unstructured knowledge is
not helpful in every context. Two datasets (“gun control”, and “nuclear energy”)
even perform best in our main core demonstrating the relevance of the topic. Some
types of context might be very specific and cover lots of technical terms that external
knowledge sources might not be able to model well. Overall our methods show great
improvements on both measures, increasing on accuracy by 7% and on F1 by 4%.

Testing our final framework on the complete UKP Sentential Argument Mining
Corpus, Table 5.4 shows our performance against the baseline. Seven out of eight
topics beat the average F1 of the baseline, with the “abortion”-dataset being the
peak at 69.93% on F1. Overall, our framework beats the baseline by 5% on F1,
achieving 84.16% on accuracy and 65.60% on F1. Thus, we show an improvement
on argument identification with the help of our methods.

Studying the complexity performance of our methods, Figure 5.1 show the average
runtime of our methods. +LDA (third bar) increases the runtime from 30 to 276
seconds because the number of edges per node went from 2 to 50. +Glove (fourth
bar) calculates a sentence vector and the cosine similarity of each word vector and
the sentence vector, pushing the runtime to 301 seconds. +OpenIE (fifth bar) works
with the Java framework OpenIE which, embedding it into a Python framework,
consumes time. Combined with the Google search via a HTTP request, the runtime
peaks at 334 seconds. Focusing real world applications we lower the number of
nodes of the knowledge graoh from 600 to 200 (red bar), resulting in a third of the
original runtime of our framework. On average, every instances now is executed in
121 seconds.
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Fig. 5.1: Average runtime per instance of our proposed methods on 200 instances of each
of the eight test sets. Methods with blue bars build a structured-knowledge based
graph covering up to nn = 600 nodes, compared to our final framework with up
to nn = 200 nodes in red.

5.3.1 Error Analysis

To investigate under what conditions our framework finds irrelevant paths, we
conduct a qualitative error analysis. We randomly selected error paths which were
found by our framework. The reasons are mainly (1) questionable entity linking by
Wikifier, (2) falsely connecting nodes from the two graphs, and (3) noisy data. The
first example in Table 5.5 generates the following path:

There is
W IKIF IERED−−−−−−−−−−→ English grammar (Q560583) part of−−−−→

P 361
English (Q1860)

country−−−−−→
P 17

United States of America (Q30) MAT CH−−−−−−→ state
considered−−−−−−→ abortion

MAT CH−−−−−−→ abortion .

Due to the Wikifier mapping There is to the Wikidata entityEnglish grammar (Q560583)
this path falsely connects the sentence to the topic. This problem can be mitigated
by specifying the Wikifier parameters less error-prone. The second example in Table
5.5 produces the path:

hate
W IKIF IERED−−−−−−−−−−→ Hate speech (Q653347) on focus list of W ikimedia project−−−−−−−−−−−−−−−−−−−−−−→

P 5008

WikiForHumanRights (Q78499962) instance of−−−−−−−→
P 31

human rights (Q8458) MAT CH−−−−−−→

humanity
has−−→ energy needs

MAT CH−−−−−−→ energy .
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topic sentence label
Abortion There is no third possibility. no-argument
Nuclear energy We hate spam too! no-argument
School uniforms Wearing school uniform is also important

for you to save time changing clothes or
outfits because you are trying to figure
out the right combination of shirt, pants,
blouse or skirt.

argument

Gun control While this danger is likely to endure,
the easy availability of firearms makes
such hate crimes far more deadly and far
more frightening.

argument

Tab. 5.5: Randomly sampled sentences from the testing corpus.

Although every edge in the path makes some sense, the total connection of hate and
energy via the context of human rights is rather questionable. This problem can be
mitigated by applying further cleaning strategies on the used knowledge.

5.3.2 Case Study

The example in Figure 4.7 demonstrates the power of our method. Calculating the
sentence vector vs and looking up the entity vectors yields:

cos(vs, GV (“office”)) ≈ 0.7007
cos(vs, GV (“room”)) ≈ 0.7195
cos(vs, GV (“location”)) ≈ 0.6469
cos(vs, GV (“space”)) ≈ 0.6210
cos(vs, GV (“spacetime”)) ≈ −0.0365
cos(vs, GV (“time”)) ≈ 0.8891.

Since the offices-related concepts and times-related concepts are relevant to this
specific sentence, it makes sense that the vectors of corresponding entities have a
cosine similarity close to 1. Whereas the entity spacetime might be related to both
space and time, it is not relevant to this sentence. Therefore, cutting at the threshold
of tcos = 0.4 utilizes this fact and prevents from finding this path.

Furthermore, we randomly picked correct classified instances and now study the
paths found by our framework. The third example in Table 5.5 creates the following
paths:

school MAT CH−−−−−−→ school students
wear name tags on−−−−−−−−−−−−→ hand side of their shirts

MAT CH−−−−−−→ Shirt (Q76768) has part−−−−−→
P 527

Blouse (Q152563) W IKIF IERED−−−−−−−−−−→ blouse ,

40 Chapter 5 Experimental Evaluation



school MAT CH−−−−−−→ High school girls
must wear−−−−−−−→ skirts

MAT CH−−−−−−→ skirt ,

school MAT CH−−−−−−→ school students
wear name tags on−−−−−−−−−−−−→ hand side of their shirts

MAT CH−−−−−−→ shirt ,

school MAT CH−−−−−−→ school boys
wear−−−→ trousers

MAT CH−−−−−−→ Trousers (Q39908)
W IKIF IERED−−−−−−−−−−→ pants ,

skirt
MAT CH−−−−−−→ Their skirts

vary depending−−−−−−−−−→ depending school
MAT CH−−−−−−→ school ,

school uniform
W IKIF IERED−−−−−−−−−−→ School uniform (Q862633)

W IKIF IERED−−−−−−−−−−→ school uniforms ,

shirt
W IKIF IERED−−−−−−−−−−→ Shirt (Q76768) has part−−−−−→

P 527
Blouse (Q152563)

W IKIF IERED−−−−−−−−−−→ blouse .

For the fourth example in Table 5.5, our framework creates the following paths:

crimes
W IKIF IERED−−−−−−−−−−→ Crime (Q83267) subclass of−−−−−−−→

P 279
statutorylaw (Q7766927)

MAT CH−−−−−−→ laws
P revention of−−−−−−−−−→ firearm− related injuries MAT CH−−−−−−→ firearms ,

crimes
W IKIF IERED−−−−−−−−−−→ Crime (Q83267) subclass of−−−−−−−→

P 279
statutory law (Q7766927)

MAT CH−−−−−−→ stand− your − ground laws may increase−−−−−−−−→ violent crime
MAT CH−−−−−−→

Hate crime (Q459409) W IKIF IERED−−−−−−−−−−→ hate ,

hate
W IKIF IERED−−−−−−−−−−→ Hatecrime (Q459409) subclass of−−−−−−−→

P 279
Crime (Q83267)

W IKIF IERED−−−−−−−−−−→ crimes ,

crimes
W IKIF IERED−−−−−−−−−−→ Crime (Q83267) subclass of−−−−−−−→

P 279
statutory law (Q7766927)

MAT CH−−−−−−→ laws
requiring−−−−−−→ people

owning−−−−→ gun
MAT CH−−−−−−→ gun ,

gun control
MAT CH−−−−−−→ guns

MAT CH−−−−−−→ gun
W IKIF IERED−−−−−−−−−−→ Handgun(Q1574963)

subclass of−−−−−−−→
P 279

Firearm (Q12796) W IKIF IERED−−−−−−−−−−→ firearms ,

gun control
MAT CH−−−−−−→ guns

recovered in−−−−−−−−→ crimes of states in U.S.
MAT CH−−−−−−→

Hate crime (Q459409) W IKIF IERED−−−−−−−−−−→ hate .
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In both examples, the paths successfully connect several concepts found in the topics
and the sentences. It is unclear whether the paths represent the actual essence of the
arguments, although they provide useful background knowledge how the concepts
interact and therefore prove some level of sense and topic-coherence.
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6Conclusion

We presented a novel argument mining framework, which improves knowledge
extraction using structured and unstructured data. We overcome the problem of
exponential growth of the knowledge graph needed for path extraction using two
key ideas: topic modeling to improve the selection of relevant properties, and word
embedding to ensure topical consistency, which leads to a sparser knowledge graph.
In comparison to existing methods, we can process a much larger amount of data
and take more possible properties into consideration. This allows us to discover
more relevant paths. Our results show an average performance of 84.16% for the
accuracy and 65.60% for the F1 measure on the UKP Sentential Argument Mining
Corpus. This may contribute to future work that combines argument mining with
discrete knowledge in the form of knowledge graphs.

6.1 Future work

As our experiments show, parameters like the graph size have to be chosen wisely de-
pending on the given application. Often times it is a trade-off between performance
and complexity. Especially the topic-wise qualitative results demonstrate the power
of a topic. To emphasize the topic relevance of a given argument, future work might
supplement a main core with a selection of methods depending on the complexity
and specificity of the given topic. Speaking of real-world applications, parallelization
and distribution play a huge role. Future work might therefore dump a version of
Wikidata to overcome SparQL limitations and parallelize the dynamic BFS on a local
Wikidata graph.
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